Fundamental Physics At Extreme Light|49 Article(s)
Quantum splitting of electron peaks in ultra-strong fields
Bo Zhang, Zhi-Meng Zhang, and Wei-Min Zhou
Effects of multiple nonlinear Compton scattering on electrons in ultra-strong fields are described using analytic formulas similar to those in the theory of multiple bremsstrahlung. Based on these analytic formulas, a new pure quantum effect of multiple nonlinear Compton scattering called quantum peak splitting is identified: the electron peak splits into two when the average number of nonlinear Compton scatterings per electron passes a threshold of 5.1 and is below 9. Quantum peak splitting stems from the discreteness of quantum radiation reaction, with one of the split peaks being formed by electrons emitting zero to three times and the other by electrons emitting four or more times. This effect provides a new mechanism for the formation of electron peaks, imposes a new beamstrahlung limit on future colliders, and corrects the picture of quantum radiation reaction. Experiments can be performed on lasers with intensities ≳1021 W/cm2, which are reachable on PW-scale facilities.
Matter and Radiation at Extremes
  • Publication Date: Jan. 01, 2023
  • Vol. 8, Issue 5, 054003 (2023)
Induction heating for desorption of surface contamination for high-repetition laser-driven carbon-ion acceleration
Sadaoki Kojima, Tatsuhiko Miyatake, Hironao Sakaki, Hiroyoshi Kuroki, Yusuke Shimizu, Hisanori Harada, Norihiro Inoue, Thanh Hung Dinh, Masayasu Hata, Noboru Hasegawa, Michiaki Mori, Masahiko Ishino, Mamiko Nishiuchi, Kotaro Kondo, Masaharu Nishikino, Masaki Kando, Toshiyuki Shirai, and Kiminori Kondo
This study reports the first experimental demonstration of surface contamination cleaning from a high-repetition supply of thin-tape targets for laser-driven carbon-ion acceleration. The adsorption of contaminants containing protons, mainly water vapor and hydrocarbons, on the surface of materials exposed to low vacuum (>10-3 Pa) suppresses carbon-ion acceleration. The newly developed contamination cleaner heats a 5-μm-thick nickel tape to over 400 °C in 100 ms by induction heating. In the future, this heating method could be scaled to laser-driven carbon-ion acceleration at rates beyond 10 Hz. The contaminant hydrogen is eliminated from the heated nickel surface, and a carbon source layer—derived from the contaminant carbon—is spontaneously formed by the catalytic effect of nickel. The species of ions accelerated from the nickel film heated to various temperatures have been observed experimentally. When the nickel film is heated beyond ∼150 °C, the proton signal considerably decreases, with a remarkable increase in the number and energy of carbon ions. The Langmuir adsorption model adequately explains the temperature dependence of desorption and re-adsorption of the adsorbed molecules on a heated target surface, and the temperature required for proton-free carbon-ion acceleration can be estimated.
Matter and Radiation at Extremes
  • Publication Date: Jan. 01, 2023
  • Vol. 8, Issue 5, 054002 (2023)
Controlled transition to different proton acceleration regimes: Near-critical-density plasmas driven by circularly polarized few-cycle pulses
Shivani Choudhary De Marco, Sudipta Mondal, Daniele Margarone, and Subhendu Kahaly
A controlled transition between two different ion acceleration mechanisms would pave the way to achieving different ion energies and spectral features within the same experimental set up, depending on the region of operation. Based on numerical simulations conducted over a wide range of experimentally achievable parameter space, reported here is a comprehensive investigation of the different facets of ion acceleration by relativistically intense circularly polarized laser pulses interacting with thin near-critical-density plasma targets. The results show that the plasma thickness, exponential density gradient, and laser frequency chirp can be controlled to switch the interaction from the transparent operating regime to the opaque one, thereby enabling the choice of a Maxwellian-like ion energy distribution with a cutoff energy in the relativistically transparent regime or a quasi-monoenergetic spectrum in the opaque regime. Next, it is established that a multispecies target configuration can be used effectively for optimal generation of quasi-monoenergetic ion bunches of a desired species. Finally, the feasibility is demonstrated for generating monoenergetic proton beams with energy peak at E≈20–40 MeV and a narrow energy spread of ΔE/E≈18%–28.6% confined within a divergence angle of ∼175 mrad at a reasonable laser peak intensity of I0 ≃ 5.4 × 1020 W/cm2.
Matter and Radiation at Extremes
  • Publication Date: Jan. 01, 2023
  • Vol. 8, Issue 5, 054001 (2023)
The role of charge-exchange processes in probing hydrogen plasma with a heavy ion beam
Inga Yu Tolstikhina, and V. P. Shevelko
Charge-changing processes of low-charged ions, used in hydrogen plasma probing by the heavy ion beam probe method, are considered. Along with the ionization of beam ions by plasma electrons and protons, the charge-exchange processes of ions on H atoms and protons are also studied. It is shown that charge exchange of beam ions on plasma protons and H atoms, which is rarely taken into account, plays an important role in beam–plasma interaction. New data on the cross sections and rates of ionization and charge-exchange processes are presented for Tl+ and Tl2+ ions, which are frequently used for plasma diagnostics. Calculations are performed for hydrogen plasma temperatures Te = 1 eV–10 keV and densities Ne = 1012–1014 cm-3 at relatively low and high ion-beam velocities vb = 0.2 and 1.0 a.u., respectively. Special attention is paid to the determination of the electron temperatures at which the charge-exchange processes on H atoms and protons are important. Multiple ionization of beam ions by plasma electrons and protons is briefly discussed.
Matter and Radiation at Extremes
  • Publication Date: Jan. 01, 2023
  • Vol. 8, Issue 4, 044403 (2023)
Demonstration of multi-pass amplification of 46.9 nm laser pumped by capillary discharge
Dongdi Zhao, Yongpeng Zhao, Bo An, Jiaqi Li, and Huaiyu Cui
Matter and Radiation at Extremes
  • Publication Date: Jan. 01, 2023
  • Vol. 8, Issue 4, 044402 (2023)
Intense widely controlled terahertz radiation from laser-driven wires
N. Bukharskii, and Ph. Korneev
Matter and Radiation at Extremes
  • Publication Date: Jan. 01, 2023
  • Vol. 8, Issue 4, 044401 (2023)
Diagnosis of ultrafast ultraintense laser pulse characteristics by machine-learning-assisted electron spin
Zhi-Wei Lu, Xin-Di Hou, Feng Wan, Yousef I. Salamin, Chong Lv, Bo Zhang, Fei Wang, Zhong-Feng Xu, and Jian-Xing Li
The rapid development of ultrafast ultraintense laser technology continues to create opportunities for studying strong-field physics under extreme conditions. However, accurate determination of the spatial and temporal characteristics of a laser pulse is still a great challenge, especially when laser powers higher than hundreds of terawatts are involved. In this paper, by utilizing the radiative spin-flip effect, we find that the spin depolarization of an electron beam can be employed to diagnose characteristics of ultrafast ultraintense lasers with peak intensities around 1020–1022 W/cm2. With three shots, our machine-learning-assisted model can predict, simultaneously, the pulse duration, peak intensity, and focal radius of a focused Gaussian ultrafast ultraintense laser (in principle, the profile can be arbitrary) with relative errors of 0.1%–10%. The underlying physics and an alternative diagnosis method (without the assistance of machine learning) are revealed by the asymptotic approximation of the final spin degree of polarization. Our proposed scheme exhibits robustness and detection accuracy with respect to fluctuations in the electron beam parameters. Accurate measurements of ultrafast ultraintense laser parameters will lead to much higher precision in, for example, laser nuclear physics investigations and laboratory astrophysics studies. Robust machine learning techniques may also find applications in more general strong-field physics scenarios.
Matter and Radiation at Extremes
  • Publication Date: Jan. 01, 2023
  • Vol. 8, Issue 3, 034401 (2023)
Nonlinear branched flow of intense laser light in randomly uneven media
K. Jiang, T. W. Huang, C. N. Wu, M. Y. Yu, H. Zhang, S. Z. Wu, H. B. Zhuo, A. Pukhov, C. T. Zhou, and S. C. Ruan
Branched flow is an interesting phenomenon that can occur in diverse systems. It is usually linear in the sense that the flow does not alter the properties of the medium. Branched flow of light on thin films has recently been discovered. It is therefore of interest to know whether nonlinear light branching can also occur. Here, using particle-in-cell simulations, we find that in the case of an intense laser propagating through a randomly uneven medium, cascading local photoionization by the incident laser, together with the response of freed electrons in the strong laser fields, triggers space–time-dependent optical unevenness. The resulting branching pattern depends dramatically on the laser intensity. That is, the branching here is distinct from the existing linear ones. The observed branching properties agree well with theoretical analyses based on the Helmholtz equation. Nonlinear branched propagation of intense lasers potentially opens up a new area for laser–matter interaction and may be relevant to other branching phenomena of a nonlinear nature.
Matter and Radiation at Extremes
  • Publication Date: Jan. 01, 2023
  • Vol. 8, Issue 2, 024402 (2023)
Control of electron beam current, charge, and energy spread using density downramp injection in laser wakefield accelerators
Céline S. Hue, Yang Wan, Eitan Y. Levine, and Victor Malka
Density downramp injection has been demonstrated to be an elegant and efficient approach for generating high-quality electron beams in laser wakefield accelerators. Recent studies have demonstrated the possibilities of generating electron beams with charges ranging from tens to hundreds of picocoulombs while maintaining good beam quality. However, the plasma and laser parameters in these studies have been limited to specific ranges or attention has been focused on separate physical processes such as beam loading, which affects the uniformity of the accelerating field and thus the energy spread of the trapped electrons, the repulsive force from the rear spike of the bubble, which reduces the transverse momentum p⊥ of the trapped electrons and results in small beam emittance, and the laser evolution when traveling in the plasma. In this work, we present a comprehensive numerical study of downramp injection in the laser wakefield, and we demonstrate that the current profile of the injected electron beam is directly correlated with the density transition parameters, which further affects the beam charge and energy evolution. By fine-tuning the plasma density parameters, electron beams with high charge (up to several hundreds of picocoulombs) and low energy spread (around 1% FWHM) can be obtained. All these results are supported by large-scale quasi-three-dimensional particle-in-cell simulations. We anticipate that the electron beams with tunable beam properties generated using this approach will be suitable for a wide range of applications.
Matter and Radiation at Extremes
  • Publication Date: Jan. 01, 2023
  • Vol. 8, Issue 2, 024401 (2023)